19F DOSY DIFFUSION-NMR SPECTROSCOPY OF FLUOROPOLYMERS

Peter L. Rinaldi, 1,2 Chun Gao, 1 Yingbo Wan, 2 Gerald Lopez, 3 Chenglong Xu, 2 Dongxue Chen, 2 Daniel Featherston, 1 Peter A. Fox, 4 Xiaohong Li, 2 Bruno Ameduri, 3 Donald F. Lyons, 4 Elizabeth F. McCord, 4 Eric. Twum, 1,5 and Faith J. Wyzgoski 6

1Department of Chemistry, University of Akron, 190 East Buchtel Commons, Akron, OH 44325-3601, USA

2College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 21513, P. R. China

3Ingénierie & Architectures Macromoléculaires, Institut Charles Gerhardt, École Nationale Supérieure de Chimie de Montpellier, 8 Rue de l’École Normale, 34296 Montpellier, France

4E. I. Du Pont de Nemours and Co, Experimental Station, Wilmington, Delaware 19880-0402, USA.

5Indiana University, Department of Chemistry, 800 E. Kirkwood Ave., Bloomington, Indiana 47405-7102, USA. Current Address.

6Department of Chemistry and Biochemistry, The Ohio State University, 1760 University Drive, Mansfield, Ohio 44906, USA

NMR studies of fluoropolymers is a very exciting and useful field. The presence of three NMR active nuclei, the high natural abundance of both 1H and 19F, and the unique NMR properties of 19F produce NMR spectra with an amazing amount of information. 19F detected diffusion ordered spectroscopy (DOSY) NMR experiments have been shown to be useful for distinguishing between the resonances of main-chain and chain-end polymer units. The performance of 19F DOSY NMR experiments (and in general any type of NMR experiments) on fluoropolymers creates some unique complications that very often prevent detection of important signals. Factors that create these complications include: 1) the presence of many scalar couplings among 1H, 19F and 13C nuclei; 2) the large magnitudes of many 19F homonuclear couplings (especially 2J$_{FF}$); 3) the large 19F NMR chemical shift range; and 4) the low solubility of these materials (which requires that experiments be performed at high temperature). Many methods for performing 1H detected DOSY experiments have been reported in the literature. Very often, these methods fail to produce detectable signals in 19F detected DOSY experiment, especially for the weak signals from fluoropolymer chain-ends and branch structures, which are often the most important components to characterize.

A systematic study of the various methods for obtaining DOSY NMR data, and the adaptation of these methods to obtain 19F detected DOSY data has been performed using a mixture of low
molecular weight, fluorinated model compounds. The best pulse sequences and optimal experimental conditions have been determined for obtaining good quality 19F DOSY spectra. The optimum pulse sequences for acquiring 19F DOSY NMR data have been determined for various circumstances taking into account the spectral dispersion, number and magnitude of couplings present, and experimental temperature. Pulse sequences and experimental parameters for optimizing these sequences for the study of fluoropolymers have been determined.

The utility of these optimized experiments is illustrated with various fluoropolymers including poly(vinylidene fluoride-co-hexafluoropropylene) copolymer, poly(vinylidene fluoride-ter-tetrafluoroethylene-ter)hexafluoropropylene terpolymer, and poly(chlorotrifluoroethylene-co-vinylidene chloride) copolymer. Using these new experimental conditions, it is possible to study the diffusion of polymeric structure elements whose weak NMR signals were previously undetectable in DOSY experiments.

We wish to acknowledge the support of The Ohio Board of Regents and The National Science Foundation (CHE-0341701 and DMR-0414599) for funds used to purchase the NMR instrument used for this work. We thank the NSF (DMR-0905120), China National Science Foundation, E. I. du Pont de Nemours and Co. and Honeywell International Co. for their support of this work. We also wish to thank the staff of the Magnetic Resonance Centers at the University of Akron and Soochow University for their help in maintaining the instruments used for this work and for providing NMR instrument time to develop some of the pulse sequences used.