Title: Self-assembly behavior of functional polycaprolactones

Authors: <u>Hanghang Wang</u>, Erika L. Calubaquib, Michael C. Biewer and Mihaela C. Stefan^{*}

Abstract

Amphiphilic homo polycaprolactones (PCLs) having di-, tri-, tetra(ethylene glycol) (ME₂, ME₃, ME₄) mono functional groups and a tri(ethylene glycol)/dodecyl (ME₃DD) di functional group were synthesized by ring opening polymerization (ROP) of the corresponding γ -functionalized ε -caprolactone (CL) monomers. All the homopolymers formed spherical micelles in aqueous media with variable sizes between 73.2 nm-152.0 nm. The critical micelle concentration (CMC) for PME₂CL, PME₃CL, PME₄CL, and PME₃DDCL were 2.2×10^{-1} , 2.4×10^{-1} , 3.7×10^{-1} gL⁻¹, and 1.8×10^{-2} gL⁻¹, respectively. With the increasing of hydrophilic oligo(ethylene glyco) chain length, the polymeric micelles became less stable and their cloud point tempeature increased from 58.6 °C-85.8 °C. PME₃DDCL micelles were more stable due to the increased hydrophobicity from the additonal dodecyl functional group and had the highest loading capacity of 4.8%. However, it significantly affected the cloud point tempeature (T_{cp}) of PME₃DDCL which was not detected even lowing temperature to 4 °C. Compared with homopolymers, amphiphilic blcok copolymers tend to have higher thermodynamic stability. Therefore, a new amphiphilic diblcok copolymer polycaprolatone-block-poly(triethylene glyco/propyl-disubstituted caprolacotne) (PCL₄₄-*b*-P(ME₃PyCL)₅₆) with a mocelular weight of 5,300 g/mol and a PDI of 1.69 was preparated by sequential polymerization. The self-assembly was achieved in aqueous media and the CMC was 2.41×10^{-3} gL⁻¹. It is comparable to that $(1.54 \times 10^{-3} \text{ gL}^{-1})$ of polycaprolactone-block-poly(triethylene glycol) (PCL₄₈-*b*-P(ME₃)₅₂) diblock copolymer with a molecular weight of 6,000 g/mol and a PDI of 1.38.

